

TEAM HYDRA

Swimming Swarm Team 1

Priyansh Bhatnagar, Trevor Jones, Hemanth Koralla, Aneri Muni, Vishnu Perumal, Michael Tatum

CREATING THE NEXT®

Vision

Develop a swarm robotics system of six autonomous underwater vehicles (AUVs) that would aid in the search and retrieval missions for flight recorders

Design and prototype a system that will allow six robots to collaborate with one another in an underwater setting

Specifications

- Vehicle specifications
- Testing Specifications
- Approach

Key Milestones

- Select and order hardware 1/24/18
- Finalize software 2/22/18
- Create control flow 2/28/18
- Integrate software and hardware 3/4/18
- Tests single robot 3/4/18
- Create multiple robots 4/8/18
- Test multiple robots 4/22/18
- Design expo 4/24/18

VISION

- Flight recorder retrieval is a time-sensitive mission
- Aid in search and retrieval missions for flight recorders
- How?
 - Develop six swarm AUVs
 - Implement leader-follower swarming algorithm to execute underwater search missions

OBJECTIVES

Each HydraBot will:

- Listen for pulses from a locator beacon
- Maintain formation and move towards signal
 - Use leader-follower swarming algorithm
 - Communicate through optical signals

OVERALL WORKFLOW

SPECIFICATIONS: CHASSIS AND ACTUATORS

Tupperware Enclosure

Price: \$7.99

Purpose: Waterproof enclosure for all electronics

Specification: 7.9" L x 5.4" W x 2.5" H

Underwater DC Motor

Price: \$30.00

Purpose: To move the propellers

Specification: 25A, 230V, 30000rpm

SPECIFICATION: CONTROLLERS

Raspberry Pi Zero

Price: \$5.00

Purpose: Main processor

Specification: 512MB SDRAM, 1GHz ARM11 core, 40-pin GPIO

Arduino Pro Mini

Price: \$9.95

Purpose: GPIO expander

Specification: ATmega328, 150mA, max 12V

SPECIFICATION: POWER

Lipo Pack Battery

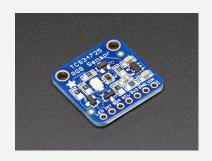
Price: \$7.64

Purpose: Power Raspberry Pi, Arduino Pro Mini, and motors

Specification: Turnigy 1600mAh 2S 20C (discharge rate)

Battery Life: ~30 min

SPECIFICATION: COMMUNICATION



RGB LED

Price: \$1.95

Purpose: Send signals through different colors

Specification: 2.0V (R), 3.2V (G), 3.2V (B)

RGB Color Sensor

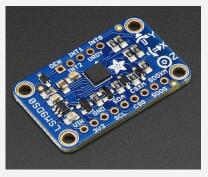
Price: \$7.95

Purpose: Detect different colors

Specification: 5V max input, light-to-frequency

converter reads an 8 x 8 array of photodiodes.

SPECIFICATION: SENSORS



Time-of-Flight Sensor

Price: \$14.95

Purpose: Distance measurement to maintain position within swarm

Specification: 50mm to 1200mm of range distance

Inertial Measurement Unit

Price: \$24.95

Purpose: Receive feedback to create PID controller

Specification: 9-DOF Accel/Mag/Gyro+Temp

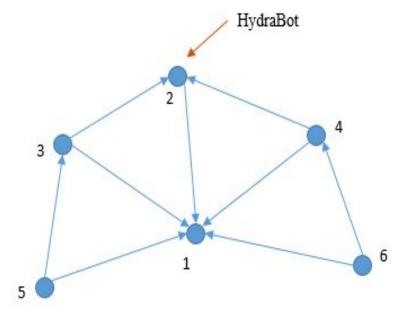
Acoustic Transmitter/Receiver

Price: \$10.35

Purpose: Detect the audio beacon of blackbox and move swarm

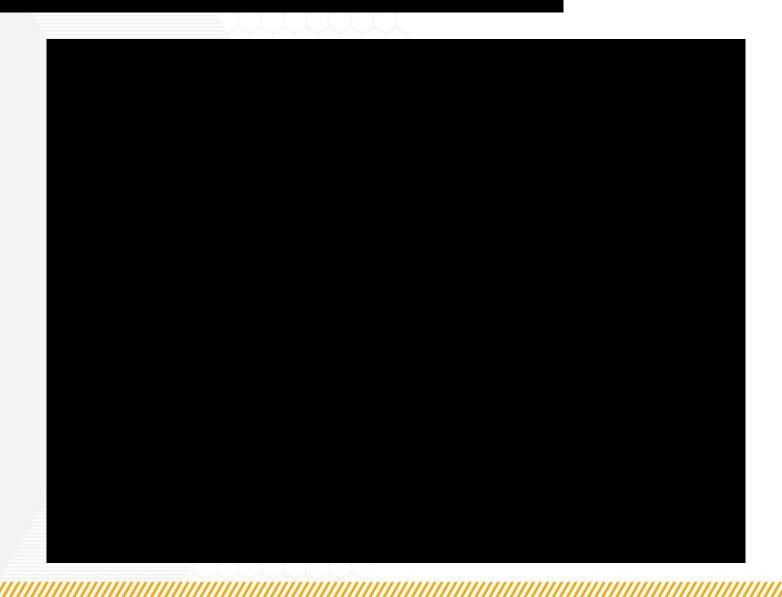
Specification: 4.5 meter max, 5V max

TOTAL COST ESTIMATE

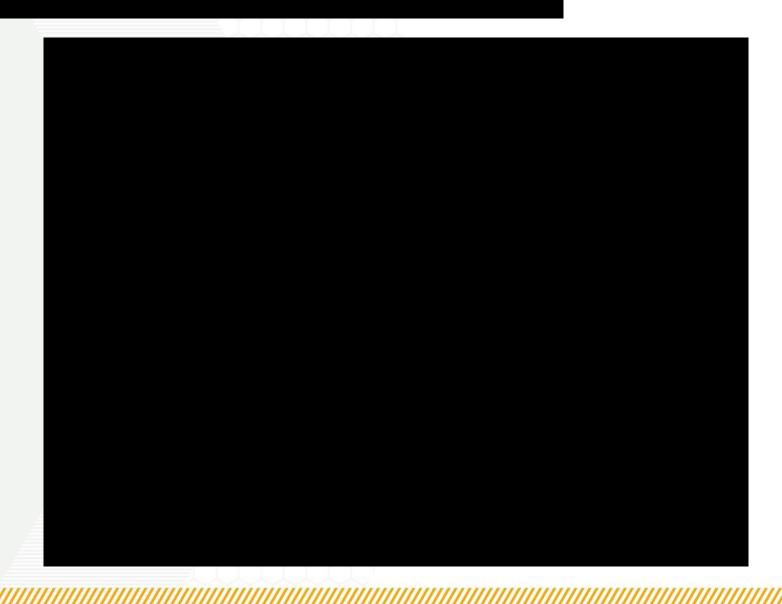


Item	Price	Quantity	Cost
Tupperware Enclosure	\$7.99	6	\$47.94
Underwater DC Motor	\$30.00	12	\$360.00
Raspberry Pi Zero	\$5.00	6	\$30.00
Arduino Pro Mini	\$9.95	6	\$59.70
Lipo Pack Battery	\$7.64	6	\$45.84
RGB LEDs	\$1.95	24	\$46.80
RGB Color Sensor	\$7.95	24	\$190.80
TOF Sensor	\$14.95	24	\$358.80
IMU	\$24.95	6	\$149.70
Acoustic tx/rx	\$10.35	6	\$62.10
Total			\$1,351.68

SPECIFICATION: SWARMING ALGORITHM



- Decentralized control algorithm
 - No central communication unit ("God's eye view")
 - Communication between immediate neighbors
- Maximally-spanning configuration
- Mixing formation control and leader-follower coverage control


FORMATION CONTROL

LEADER-FOLLOWER

TESTING

- Georgia Tech's Robotarium provides simulation tools and surrogate platforms to test swarming algorithm
- Completed HydraBots will be tested in a shallow children's pool or the J. Erskine Love Building pool

TESTING

- Acoustic pinger will act as the beacon from the flight recorder
- In the process of finding an acoustic pinger to use. Potential sources:
 - Woodruff Building of Mechanical Engineering
 - Dr. Ji-Xun Zhou: Principal Research Scientist in Acoustics and Dynamics

SCHEDULE: HARDWARE SELECTION

In.	Task Name	Start	Finish	Duration	J	an 20	018		F	eb 20	18		- 1	Mar 2	018			Apr	2018	
	rusk Nume	Start	rinsii	Daration	1/7 1	/14	1/21	1/28	3 2/4	2/11	2/18	2/25	3/4	3/11	3/18	3/25	4/1	4/8	4/15	4/22
1	Select and Order Hardware Platform to Use	1/8/2018	1/15/2018	1w 1d					•											•
2	Finalize/modify Chassis Design and Motor Control	1/18/2018	1/25/2018	1w 1d																
3	Test basic hardware platform	1/21/2018	1/28/2018	1w 1d		[

ID	Task Name	Start	Finish	Duration		Jan 20	018		e	Feb 201	8			Mar 2	018			Apr	2018	
ID	rusk Nume	Start	FINISH		1/7	1/14	1/21	1/28	2/4	2/11	2/18	2/25	3/4	3/11	3/18	3/25	4/1	4/8	4/15	4/22
1	Select and Order Light tx/rx	1/8/2018	1/28/2018	3w																
2	Finalize communication protocol	1/21/2018	1/28/2018	1w 1d																

ID	Task Name	Start	Finish	Duration		Jan 20	018		1	Feb 201	18			Mar 2	018			Apr	2018	
10	rask Name	Start	riilisii	Duration	1/7	1/14	1/21	1/28	2/4	2/11	2/18	2/25	3/4	3/11	3/18	3/25	4/1	4/8	4/15	4/22
1	Finalize Microcontroller to Use	1/8/2018	1/15/2018	1w 1d					"											
2	Select battery	1/8/2018	1/21/2018	2w																
3	Team review of microcontroller	1/21/2018	1/28/2018	1w 1d																

SCHEDULE: SOFTWARE

ID	Task Name	Start	Finish	Duration		Jan 20	018			Feb 201	18			Mar 2	018			Apr	2018	
ID	rask Name	start	FINISH	Duration	1/7	1/14	1/21	1/28	2/4	2/11	2/18	2/25	3/4	3/11	3/18	3/25	4/1	4/8	4/15	4/22
1	Software	1/8/2018	2/22/2018	6w 4d	7							7								
2	Determine swarm algorithm to use	1/8/2018	1/28/2018	3w																
3	Simulate swarm algorithm behavior	1/28/2018	2/22/2018	3w 5d			[

SCHEDULE: CONTROL FLOW

ID	Task Name	Start	Finish	Duration		Jan 20	18			Feb 201	8			Mar 2	018			Apr	2018	
ID	rask Name	Start	FINISH	Duration	1/7	1/14	1/21	1/28	2/4	2/11	2/18	2/25	3/4	3/11	3/18	3/25	4/1	4/8	4/15	4/22
1	Create Control Flow	2/15/2018	2/28/2018	2w						∇										
2	Integrate sensors on hardware platform	2/15/2018	2/22/2018	1w 1d																
3	Software/Hardware compatibility review	2/22/2018	2/28/2018	1w																

SCHEDULE: HARDWARE/SOFTWARE INTEGRATION

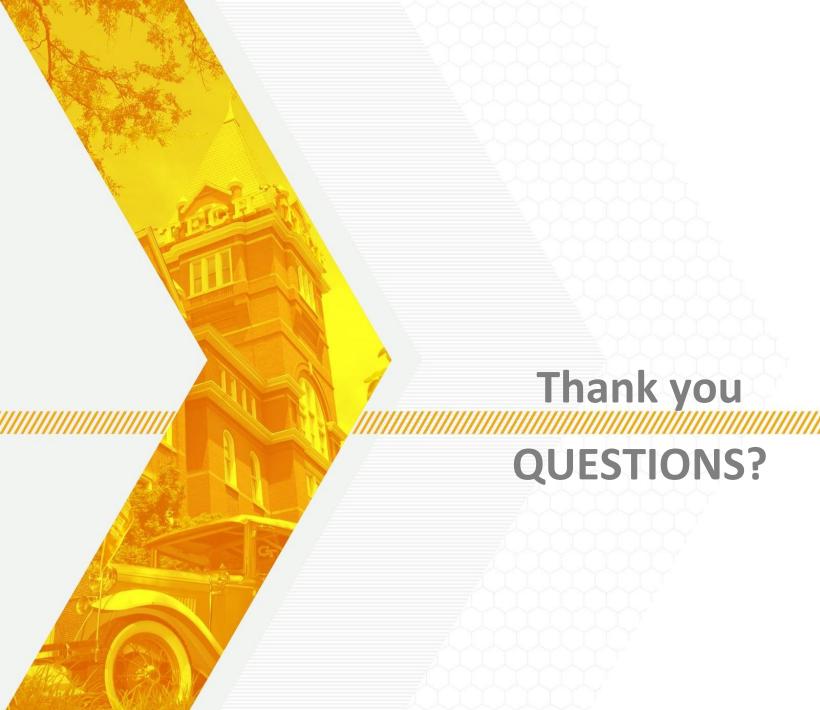
10	Tools Manna	Chart	Finish	Duration		Jan 2	018			Feb 201	8			Mar 2	018			Apr	2018	
ID	Task Name	Start	Finish	Duration	1/7	1/14	1/21	1/28	2/4	2/11	2/18	2/25	3/4	3/11	3/18	3/25	4/1	4/8	4/15	4/22
1	Integrate Software and Hardware	2/28/2018	3/4/2018	5d																
2	Design PID controller	2/1/2018	2/15/2018	2w 1d																
3	Identify PID gains	2/1/2018	2/7/2018	1w																
4	Test Single Robot	2/22/2018	3/4/2018	1w 4d																

SCHEDULE: MULTIPLE ROBOTS

ID	Task Name	Start	Finish	Duration		Jan 2	018			Feb 201	8			Mar 2	018			Api	2018	
ID	rask Name	Start	rinisti	Duration	1/7	1/14	1/21	1/28	2/4	2/11	2/18	2/25	3/4	3/11	3/18	3/25	4/1	4/8	4/15	4/22
1	Create Multiple Robots	3/4/2018	4/8/2018	5w 1d								7	7				-	∇		
2	Create Second Robot	3/4/2018	3/15/2018	1w 5d																
3	Create Third+ Robots	3/25/2018	4/8/2018	2w 1d																

ID	Task Name	Start	Finish	Duration		Jan 20	018			Feb 201	8			Mar 2	018			Apr	2018	
ID	rusk Nume	Start	Fillisti	Duration	1/7	1/14	1/21	1/28	2/4	2/11	2/18	2/25	3/4	3/11	3/18	3/25	4/1	4/8	4/15 4/	1/22
1	Test Multiple Robots	3/16/2018	4/22/2018	5w 3d										V					$\overline{\nabla}$	7
2	Test communication between two robots	3/16/2018	3/25/2018	1w 3d																
3	Product testing on multiple robots	4/8/2018	4/22/2018	2w 1d																

SCHEDULE: DELIVERABLES



ID.	Task Name	Start	Finish	Duration	8	Jan 20	18			Feb 201	8			Mar 20	018			Apr	2018	
ID	rask Name	Start	rinisri	Duration	1/7	1/14	1/21	1/28	2/4	2/11	2/18	2/25	3/4	3/11	3/18	3/25	4/1	4/8	4/15	4/22
1	Oral Presentation	1/8/2018	1/22/2018	2w 1d																
2	Review of Design Proposal	1/8/2018	1/22/2018	2w 1d																
3	Final Project Demonstration	4/22/2018	4/24/2018	3d																
4	Participation in Design Expo	4/24/2018	4/24/2018	1d																0

CURRENT PROJECT STATUS

- Finalized all the parts, components and major design features.
- Met with Dr. Magnus Egerstedt to determine suitable coverage control algorithms for multi-agent systems used for beacon detection.
- Method to acquire distance measurements underwater and the development for underwater communication protocol still needs to be researched and tested.
- Reached out to Dr. Ji-Xun Zhou, Georgia Tech's Principal Research Scientist in Acoustics and Dynamics, for an acoustic pinger.

CREATING THE NEXT®