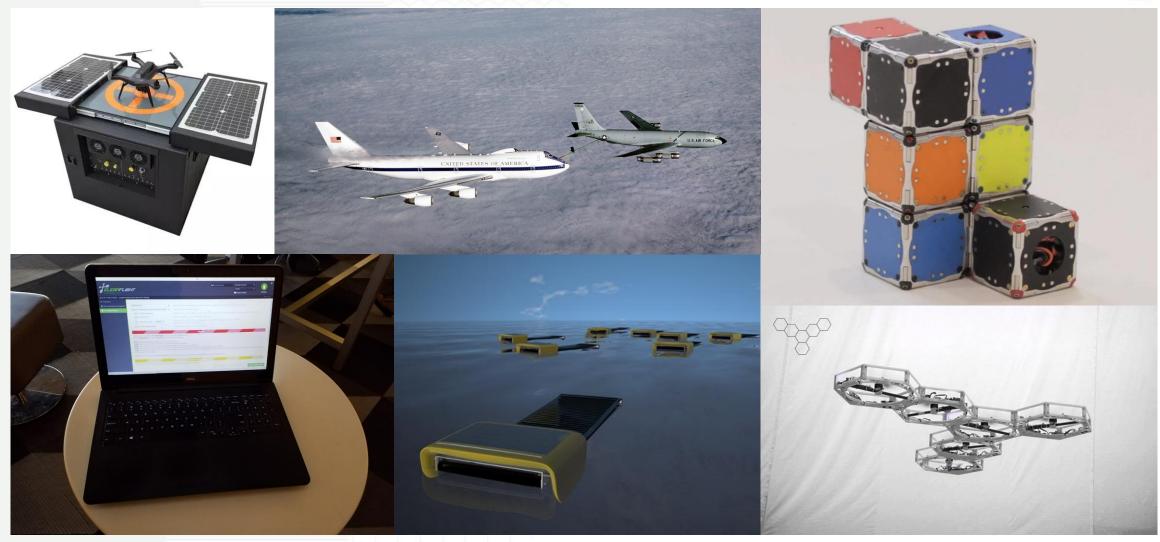


Skylsland: Aerial Docking Drone System

Latifah Almaghrabi, Adrian de la Iglesia Valls, Ayca Ermis, Jiaqing Li, and Lingfeng Zhou

CREATING THE NEXT


ECE 4012 Team: Skylsland

School of Electrical and Computer Engineering

Georgia Institute of Technology - College of Engineering

Background

Goals and Specifications

Hardware Feature	Specification
Position Sensor Detection Range	> 10m, >40°
Alignment Sensor Sensitivity	< 1cm
Minimum Re-polarization Magnetic Field	> 50kA/m
Drone-to-Drone Communication Sensor Distance	> 20m
Drone-to-Ground Communication Sensor Distance	~50m
Flight Time	5 minutes

Software Feature	Specification
Amount of Command Input	< 12
Bit Rate	125 kbs/s
Communication Latency	< 250ms
State Precision	±5cm, ±5°
Stability Correction Rate	> 100Hz

Drone and Microcontroller Features

Microcontroller Compared

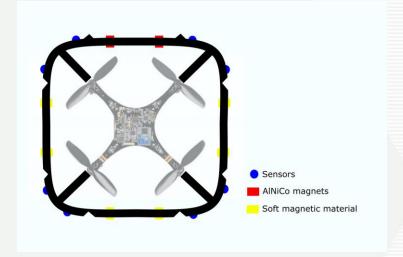
	F3 Controller	BeagleBone Blue			
Core	32-Bit ARM Cortex-M4	32-Bit ARM Cortex-A8			
Maximum Frequency	72MHz	1GHz			
Flash Memory	16 up to 512 kB	4 GB			
RAM	16 kB	512 MB			
Operating Voltage, VDD	1.8 V	6-18 V			
Sensors	6-axis IMU	9-axis IMU, barometer			

F3 Controller

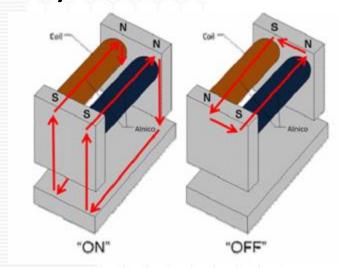
BeagleBone Blue Controller

Docking and Positioning Sensors

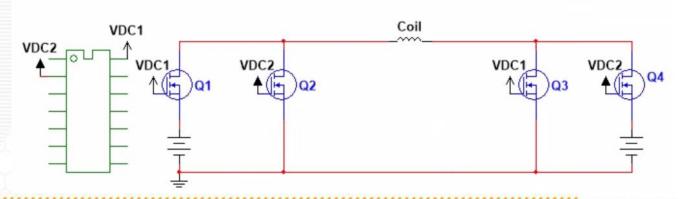
Far Range Positioning: Image Processing and Machine Learning Close Range Positioning:
AprilTag
and Time of Flight Sensors



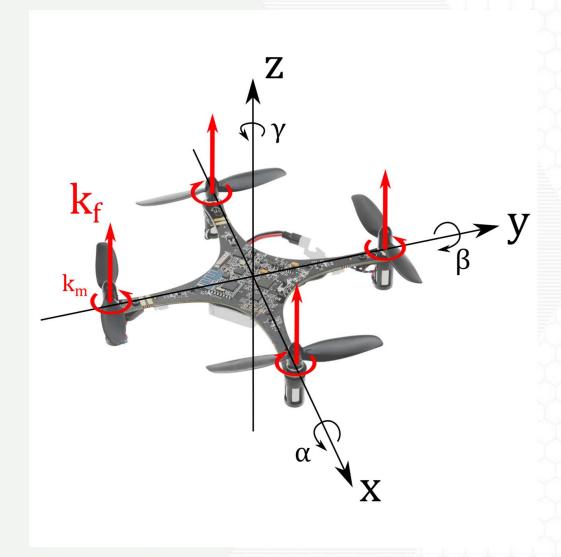
Docking Mechanism



Mechanical Structure

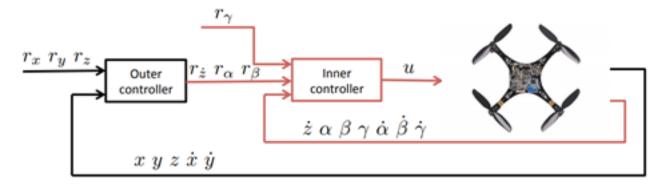


Physics



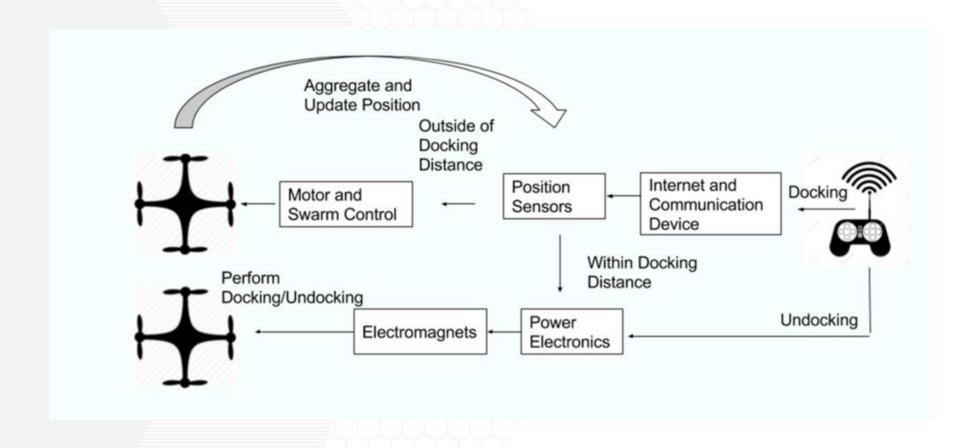
Control Circuit

Control System


Matrix Model

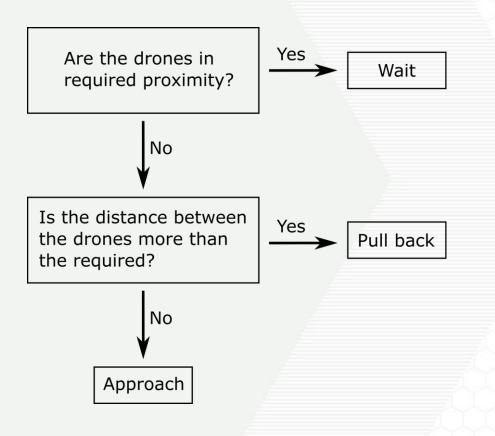
$$\begin{pmatrix} F \\ M_{\alpha} \\ M_{\beta} \\ M_{\gamma} \end{pmatrix} = \begin{pmatrix} k_F & k_F & \dots & k_F \\ L_{1,\alpha} \cdot k_F & L_{2,\alpha} \cdot k_F & \dots & L_{n,\alpha} \cdot k_F \\ L_{1,\beta} \cdot k_F & L_{2,\beta} \cdot k_F & \dots & L_{n,\beta} \cdot k_F \\ L_{1,\gamma} \cdot k_m & L_{2,\gamma} \cdot k_m & \dots & L_{n,\gamma} \cdot k_m \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$$

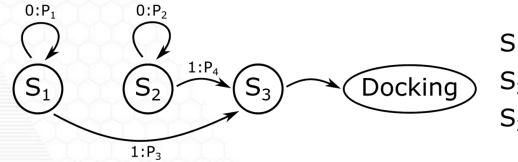
The Euler-Newton Equation


$$\begin{pmatrix} \ddot{\vec{x}} \\ \ddot{\vec{\alpha}} \end{pmatrix} = \begin{pmatrix} mI_3 & 0 \\ 0 & I_{cr} \end{pmatrix}^{-1} \left(\begin{pmatrix} \vec{F} \\ \vec{M} \end{pmatrix} + \begin{pmatrix} \vec{F}_{mag} \\ \vec{M}_{mag} \end{pmatrix} - \begin{pmatrix} 0 \\ \dot{\vec{\alpha}} \times I_{cr} \dot{\vec{\alpha}} \end{pmatrix} \right)$$

Cascade LQR Controller

Communication





Swarm

Flowchart for Swarm Behavior Probabilistic Finite State Machine (PFSM)

S₁: Approach

S₂: Pull back

S₃: Wait

Human Machine Interface (HMI)

Leading Industry Solution

DJI Mavic Pro Controller:

- Two-Tier HMI
- Telemetry LCD
- Android/iOS App
- Proprietary Firmware

Proposed HMI Solution

Open-Source flight controller software for modern flight boards install Chrome App

Crazepony RadioLink:

- Multi-Tier HMI
- Configurable Controller
- CleanFlight Compatible
- Open Source Firmware

Components

Part	Vendor	Price per Unit	Requested Quantity	Cost \$21.04	
AlNiCo Magnet	Digi-Key	\$2.63	8		
SunFounder FPV Racing Drone	Amazon	\$210	2	\$420	
ToF Sensor (close range)	Adafruit	\$13.95	4	\$55.80	
ToF Sensor (long range)	Amazon	\$12.99	2	\$25.98	
Diode	Digi-Key	\$0.57	10	\$5.70	
Supercapacitor	Digi-Key	\$3.88	6	\$23.28	
MOSFET	Digi-Key	\$0.70	20	\$14	
BeagleBone Blue Flight Controller	Digi-Key	\$93.75		\$93.75	
	THE PARTY IN	\$659.55			

Current Progress

Preliminary Implementation / Work in Progress

Revision / Improvements / Finalization

	Fall 2017		FALL 2017		SPRING 2018			SPRING 2018				
	AUG	SEP	ОСТ	NOV	DEC	JAN	JAN	FEB	MAR	APR	MAY	JUN
Project Ideation												
Project Planning												
Project Proposal Presentation												
Project Implementation							CURRE	NIT				
Expo Preparation							CORRE	IN I		P	roject End	

QUESTIONS?

Thanks for Listening!

Latifah Almaghrabi Ayca Ermis

Lingfeng Zhou

ECE 4011/4012 Team: Skylsland

Georgia Institute of Technology

College of Engineering

School of Electrical and Computer Engineering

Adrian de la Iglesia Valls
Jiaqing Li